
AWS Unveils Major Bedrock Upgrade: More AI Models and Enhanced User Flexibility

(AI generated/Shutterstock)
As the generative AI landscape continually evolves with new use cases emerging, Amazon Web Services (AWS) is keeping pace by enhancing its Bedrock platform. This upgrade significantly broadens the range of AI models available, offering users more choices and greater flexibility for their AI-driven applications.
The latest updates to Amazon Bedrock include an expanded selection of AI models from AI21 Labs, Anthropic, Cohere, Meta, and Stability AI, along with Amazon’s in-house models. Additionally, Amazon has introduced advanced customization options, enabling users to precisely adjust existing models using their own proprietary data. This is complemented by new tools designed for efficient evaluation and comparison of models, which assists in pinpointing the most suitable model for specific requirements.
Commenting at AWS re:Invent 2023, Adam Selipsky, CEO of AWS, emphasized the cloud giant’s comprehensive approach to AI model deployment and development. Selipsky highlighted the collaboration with Hugging Face, a leader in the AI research space, to deploy their models on AWS SageMaker. This partnership has led to the creation of a Hugging Face AWS deep learning container designed to accelerate the training and deployment of foundation models using SageMaker, along with AWS’s Tranium and Inferentia chips.
Selipsky stressed AWS’s commitment to providing the resources necessary for building custom models. “The best chips, the most advanced virtualization, powerful petabyte-scale networking capabilities, hyperscale clustering and the right tools to help you build,” he said.
Addressing the needs of organizations looking to quickly leverage powerful models, Selipsky acknowledged the challenges they face in selecting the right model for their specific applications. Questions about model selection, deployment speed, data security, and accuracy are top concerns for these organizations.
In response, AWS is investing significantly in “that middle layer in the stack,” as Selipsky says. This investment aims to simplify the process of accessing and utilizing various foundation models, thereby enabling organizations to rapidly experiment, test, and deploy generative AI applications while ensuring data security and integrity.
Hype aside, generative AI is becoming integral to a few key business processes. AWS points out that industries such as customer service, content creation, and data analysis are increasingly relying on AI technologies to enhance efficiency and innovate services. AWS says that the Bedrock platform’s expanded capabilities and model variety can be crucial to providing businesses with the tools to develop more sophisticated, AI-driven solutions that can adapt to their evolving needs.
With the increasing capabilities of AI models, ethical considerations and the responsible use of AI have become paramount. AWS says it is addressing these concerns by embedding robust security and privacy features into Bedrock, ensuring that users can innovate with AI while adhering to ethical standards and regulations.
In short, the Bedrock platform enhancements emphasize a key theme: choice in model selection and the freedom to experiment. By broadening the array of available AI models, AWS is empowering users with the flexibility to explore and select the most fitting AI solutions for their unique needs. This approach not only fosters a more tailored use of AI technology but also encourages innovative applications across different industries. As users navigate through the diverse options within Bedrock, they are better positioned to discover and leverage AI models that align with their specific goals and challenges.
Related Items:
AWS Adds Vector Capabilities to More Databases
AWS Adds ML and Differential Privacy Features to Clean Rooms Service
AWS Launches New Analytics Engine That Combines the Power Of Vector Search And Graph Data
AWS Announces 5 New Amazon SageMaker Capabilities for Scaling with Models
February 20, 2025
- HarperDB Named an IDC Innovator for Edge Inference Delivery
- EDB Postgres AI Outperforms Oracle, SQL Server, and MongoDB in New Benchmark
- CData and Ellie.ai Partner to Streamline Enterprise Data Modeling
- Privacera Aligns AI Governance with NIST Standards to Mitigate AI Risks
February 19, 2025
- AtScale and Snowflake Announce Integration with Cortex Analyst to Deliver Trustworthy Natural Language Queries
- Sawmills Exits Stealth with $10M to Tackle Skyrocketing Observability Costs Using AI
- Prophecy Finds GenAI Boosting Data Team Productivity by Up to 50%
- CTERA Enhances Cybersecurity and AI Capabilities in Record-Setting Year
- VAST Data Introduces Event Broker for AI-Driven Real-Time Streaming
- DiffusionData Announces Free Trial of Diffusion Cloud
- Cube Launches Cube Cloud for the Microsoft Enterprise
- VAST Data Adds Block Storage to Unify Enterprise AI and Hybrid Workloads
February 18, 2025
- Boomi Unveils Comprehensive API Management to Combat Sprawl and Power Agentic AI
- Grid Status Launches Power Market Datasets on Snowflake Marketplace
- Gartner Predicts 40% of AI Data Breaches Will Arise from Cross-Border GenAI Misuse by 2027
- Fortanix Releases 2025 State of Data Security in GenAI Report
- Vultr Announces Availability of AMD Instinct MI325X GPUs to Power Enterprise AI
- SiMa.ai Advances Edge AI with Efficient Implementation of DeepSeek R1 Model
February 14, 2025
- OpenTelemetry Is Too Complicated, VictoriaMetrics Says
- What Are Reasoning Models and Why You Should Care
- Three Ways Data Products Empower Internal Users
- Keeping Data Private and Secure with Agentic AI
- Memgraph Bolsters AI Development with GraphRAG Support
- Three Data Challenges Leaders Need To Overcome to Successfully Implement AI
- Top-Down or Bottom-Up Data Model Design: Which is Best?
- PayPal Feeds the DL Beast with Huge Vault of Fraud Data
- What Leonardo DaVinci Teaches Us About Data Management
- Inside Nvidia’s New Desktop AI Box, ‘Project DIGITS’
- More Features…
- Meet MATA, an AI Research Assistant for Scientific Data
- AI Agent Claims 80% Reduction in Time to Complete Data Tasks
- DataRobot Expands AI Capabilities with Agnostiq Acquisition
- Snowflake Unleashes AI Agents to Unlock Enterprise Data
- Collibra Bolsters Position in Fast-Moving AI Governance Field
- Microsoft Open Sources Code Behind PostgreSQL-Based MongoDB Clone
- AI Making Data Analyst Job More Strategic, Alteryx Says
- EDB Says It Tops Oracle, Other Databases in Benchmarks
- Observo AI Raises $15M for Agentic AI-Powered Data Pipelines
- Anaconda’s Commercial Fee Is Paying Off, CEO Says
- More News In Brief…
- Informatica Reveals Surge in GenAI Investments as Nearly All Data Leaders Race Ahead
- Gartner Predicts 40% of Generative AI Solutions Will Be Multimodal By 2027
- PEAK:AIO Powers AI Data for University of Strathclyde’s MediForge Hub
- DataRobot Acquires Agnostiq to Accelerate Agentic AI Application Development
- Cloudera Welcomes Tom Brady as Keynote Speaker at ELEVATE26
- TigerGraph Launches Savanna Cloud Platform to Scale Graph Analytics for AI
- EY and Microsoft Unveil AI Skills Passport to Bridge Workforce AI Training Gap
- Alluxio Enhances Enterprise AI with Version 3.5 for Faster Model Training
- DeepSeek-R1 models now available on AWS
- Lightning AI Brings DeepSeek to Private Enterprise Clouds with AI Hub
- More This Just In…